Analisis Pengaruh Fungsi Aktivasi CNN terhadap Performa Klasifikasi Hewan
(1) Universitas Medan Area
(2) Universitas Medan Area
Keywords
Full Text:
PDFReferences
Y. Xu et al., “Cross-Modal Fusion Convolutional Neural Networks With Online Soft-Label Training Strategy for Mechanical Fault Diagnosis,” IEEE Trans. Ind. Informatics, vol. 20, no. 1, pp. 73–84, 2024, doi: 10.1109/TII.2023.3256400.
A. Asrianda, H. A. K. Aidilof, and Y. Pangestu, “Machine Learning for Detection of Palm Oil Leaf Disease Visually using Convolutional Neural Network Algorithm,” J. Informatics Telecommun. Eng., vol. 4, no. 2, pp. 286–293, 2021, doi: 10.31289/jite.v4i2.4185.
K. Zhang, W. Zuo, Y. Chen, … D. M.-I. transactions on, and undefined 2017, “Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising,” ieeexplore.ieee.org, vol. 8, no. 1, Dec. 2021, Accessed: May 16, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7839189/
S. Dewi, F. Ramadhani, and S. Djasmayena, “Klasifikasi Jenis Jerawat Berdasarkan Gambar Menggunakan Algoritma CNN (Convolutional Neural Network),” Hello World J. Ilmu Komput., vol. 3, no. 2, pp. 68–73, 2024, doi: 10.56211/helloworld.v3i2.518.
W. Setiawan, A. Ghofur, F. Hastarita Rachman, and R. Rulaningtyas, Deep Convolutional Neural Network AlexNet and Squeezenet for Maize Leaf Diseases Image Classification. KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics and Control, 2021. doi: 10.22219/kinetik.v6i4.1335.
Afis Julianto, Andi Sunyoto, and Ferry Wahyu Wibowo, “Optimasi Hyperparameter Convolutional Neural Network Untuk Klasifikasi Penyakit Tanaman Padi,” Tek. Teknol. Inf. dan Multimed., vol. 3, no. 2, pp. 98–105, 2022, doi: 10.46764/teknimedia.v3i2.77.
M. A. Djohar et al., “Segmentasi Citra Hati Menggunakan Metode Convolutional Neural Network dengan Arsitektur U-Net,” J. Informatics Telecommun. Eng., vol. 6, no. 1, pp. 221–234, 2022.
N. N. PRAMONO, “SIMULASI DEEP LEARNING PADA AUTONOMOUS VEHICLE MENGGUNAKAN NVIDIA JETBOT UNTUK MENJAGA JALUR KENDARAAN PADA LINTASAN DAN BERHENTI JIKA TERDETEKSI RINTANGAN,” 2020.
A. Widiyawati, “BAB 4 STRUKTUR JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORKS),” Deep Learn., p. 45, 2020.
D. W. N. Muhammad, “PEMODELAN HYBRID FUNGSI TRANSFER--GRU DENGAN NEWS SENTIMENT SEBAGAI DERET INPUT UNTUK PREDIKSI HARGA SAHAM (Studi Kasus Pada Data Harga Saham IHSG Periode 2019-2021),” Universitas Brawijaya, 2021.
D. A. Navastara, S. Kom, E. C. Fatichah, S. Kom, and M. Kom, “Implementasi Model Klasifikasi Menggunakan Metode Transfer Learning untuk Pemilihan Slice Citra 3D CBCT,” 2020.
D. S. Ameera, A. T. Damaliana, and M. Idhom, “PENERAPAN MODEL HIBRIDA ARIMA-LSTM PADA PREDIKSI INFLASI DI INDONESIA,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 3, pp. 3743–3749, 2025.
L. M. Jaelani, “ANALISIS KLASIFIKASI CITRA SATELIT WORLDVIEW-2 MENGGUNAKAN MODEL DEEP LEARNING,” 2020.
R. E. Nugraha, “Implementasi metode vader-lstm dalam pengujian pengaruh sentimen investor terhadap prediksi harga saham,” Fakultas Sains dan Teknologi UIN Syarif HIdayatullah Jakarta, 2020.
J. Xu, Z. Li, B. Du, M. Zhang, and J. Liu, “Reluplex made more practical: Leaky ReLU,” in 2020 IEEE Symposium on Computers and communications (ISCC), 2020, pp. 1–7.
A. Maniatopoulos and N. Mitianoudis, “Learnable leaky relu (LeLeLU): An alternative accuracy-optimized activation function,” Information, vol. 12, no. 12, p. 513, 2021.
S. Mastromichalakis, “ALReLU: A different approach on Leaky ReLU activation function to improve Neural Networks Performance,” arXiv Prepr. arXiv2012.07564, 2020.
S. A. Fauji, “Analisis fungsi aktivasi jaringan syaraf tiruan untuk mendeteksi karakteristik bentuk gelombang spektra babi dan sapi,” Universitas Islam Negeri Maulana Malik Ibrahim, 2012.
S. Rifky et al., Artificial Intelligence: Teori dan Penerapan AI di Berbagai Bidang. PT. Sonpedia Publishing Indonesia, 2024.
S. Rahman, M. Ramli, F. Arnia, R. Muharar, M. Zen, and M. Ikhwan, Convolutional Neural Networks Untuk Visi Komputer Jaringan Saraf Konvolusional untuk Visi Komputer (Arsitektur Baru, Transfer Learning, Fine Tuning, dan Pruning). Deepublish, 2021.
DOI: https://doi.org/10.34007/incoding.v5i2.847
Article Metrics
Abstract view : 9 timesPDF - 3 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 INCODING: Journal of Informatics and Computer Science Engineering